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ABSTRACT 

Let S be a closed, simply connected subset of the plane, J a line segment (or 
a one-pointed set), J ~ S. If for every three points of S there is a point of J 
seeing at least two of these points via S, then S is a union of two starshaped 
sets. I f J  ~ S or if S is not simply connected, the result fails. 

Let S be a subset of  R n . For points x, y in S,  we say x sees y via S if and only 

if the corresponding segment Ix, y] lies in S.  Further, the set S is said to be 

starshaped if and only if there is some point p in S such that, for every x in S, 

p sees x via S.  Valentine I-1, Prob. 6.6, p. 178] has made the following conjecture: 

For  S a closed set in R n and J a line segment, if  for each triple of  points in S 

there is a point on J seeing at least two of  these points via S,  then S is a union 

of  two starshaped sets. With stronger hypothesis, Valentine's conjecture is true 

in R 2, and it is not hard to prove the following result. 

THEOREM. Let S be a closed, simply connected subset of the plane, J a line 

segment (or a one-pointed set), J c__ S.  I f  for every three points of S there is 

a point of J seeing at least two of these points via S ,  then S is a union of two 

starshaped sets. Further, if  S contains no isolated point, we may require that 

the two starshaped sets be starshaped with respect to a point on J. 

PROOF. For  each point x in S,  let Jx denote the set of  all points of  J which x 

sees via S.  Clearly each Jx is either empty, a singleton point, or a line segment. 

In case some Jx = ~ ,  then by Helly 's  theorem, f)  {Jy: y in S ~ {x}} ~ ~ ,  

and S will consist of  the starshaped set S ,-, {x} and the isolated point {x }. 
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Otherwise, let d = [a, b] and dx = [ax, bx], a =< a~ < bx < b for every x in S. 

Define a0 = sup{a~,: xeS} ,  bo = inf{b~: xES).  If ao < bo, then S is star- 

shaped relative to both a o and b 0 . I f  bo < ao, then it is easy to show that every 

point of  S sees either b 0 or a o via S.  

However, in case d ,  S or S is not simply connected, the result fails, as the 

following example illustrates. 

EXAMPLE. Let S denote the outer boundary and interior of  Figure 1, d the 

line segment determined by a and b so that aT A S has two components. The only 

points seeing neither a nor b are in the shaded region, R, and for r in R,  x in S,  

if x, r see no common point of J fq S,  then x sees b via A. Hence for every three 

points of  S,  some point of J N S sees at least two of  these points via S.  How- 

ever, S is not expressible as a union of  two starshaped sets: there are no two points 

p, q of  S such that each of  the points u, v, w, y, z in Figure 1 sees one of  p, q 

via S .  
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Fig. 1 

Identical statements hold for the set S u [a, b] ,  which is not simply connected. 

Therefore, the strong hypothesis of the theorem is essential. 
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linear topological space if we replace the condition that  S be simply connected 

by the following assumption: The interior of  every triangle having an edge on 

J ,  and the other two edges in S,  is a subset of  S.  
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